Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Potassium sodium tin selenide, K₃NaSn₃Se₈

Xuean Chen, Xiaoying Huang and Jing Li*

Department of Chemistry, Rutgers University, Camden, NJ 08102, USA Correspondence e-mail: jingli@crab.rutgers.edu

Received 31 May 2000 Accepted 19 July 2000

The title compound, tripotassium sodium tritin octaselenide, $K_3NaSn_3Se_8$, has a molecular (zero-dimensional) structure containing trimeric $[Sn_3Se_8]^{4-}$ units which consist of three edge-sharing $SnSe_4$ tetrahedra. The $[Sn_3Se_8]^{4-}$ anions and the tetrahedrally coordinated Na^+ cations are arranged in an alternating fashion along the *c* axis to form SiS_2 -like chains, which are then separated by eight-coordinate K^+ cations. The Sn-Se bond distances are normal, being in the range 2.477 (1)–2.612 (1) Å.

Comment

In recent years, a number of intermetallic compounds in the A-Sn-Se system have been detected and structurally characterized. These include A_4 SnSe₄ (A is Na or K; Klepp, 1992a) with isolated $SnSe_4$ tetrahedra, $K_4Sn_2Se_6$ (Eisenmann & Hansa, 1993a) and K₄Sn₃Se₈ (Sheldrick, 1988) with dimers and trimers of edge-sharing tetrahedra, Na₂SnSe₃ (Klepp, 1995) with one-dimensional chains of corner-sharing SnSe4 tetrahedra, K₂Sn₂Se₅ (Klepp, 1992b) with chains of edge-sharing SnSe₅ bipyramids which are connected via apical Se atoms to form an infinite anionic framework, and K₂Sn₄Se₈ (Klepp & Fabian, 1992) containing layers of corner-sharing Sn^{IV}Se₄ tetrahedra which are connected by Sn^{II} atoms to form an open three-dimensional network. During our investigation of the quaternary K-Ni-Sn-Se system using the molten alkali-metal polychalcogenide flux method, we unexpectedly obtained single crystals of the novel title trimeric compound, K₃NaSn₃Se₈. In this paper, we report its crystal structure determination.

The crystal structure of $K_3NaSn_3Se_8$ projected approximately on the *ab* plane is shown in Fig. 1. Interestingly, Na⁺ cations and $[Sn_3Se_8]^{4-}$ anions are aligned in an alternating fashion along the [001] direction to form a chain-like structure. These chains are then separated by K⁺ cations. The $[NaSn_3Se_8]^{3-}$ chain (Fig. 2), which looks very similar to those observed in KFeS₂ (Boon & MacGillavry, 1942) and $K_2MnSn_2Se_6$ (Chen *et al.*, 2000), may be described as a substitutional variant of the SiS₂-type (Peters & Krebs, 1982). However, because Na–Se interactions are ionic in character,

it is more appropriate to describe the title compound as having a molecular (zero-dimensional) structure containing highly charged trimeric $[Sn_3Se_8]^{4-}$ units which consist of three edgesharing SnSe₄ tetrahedra. In the $[Sn_3Se_8]^{4-}$ unit, the central atom Sn1 has a site symmetry of $\overline{42m}$, giving a single Sn—Se bond distance $[4 \times 2.517 (1) \text{ Å}]$, while the external Sn2 atom lies on a twofold axis, resulting in two sets of bond lengths $[Sn2-Se1 (\times 2) 2.612 (1) \text{ and } Sn2-Se2 (\times 2) 2.477 (1) \text{ Å}]$. The terminal Sn2—Se2 bonds are markedly shorter than the bridging Sn—Se1 bonds, as expected, and both are close to those observed in the discrete di- and tritetrahedral species $K_4Sn_2Se_6$ (Eisenmann & Hansa, 1993*a*) and $K_4Sn_3Se_8$ (Sheldrick, 1988). The Se—Sn—Se angles range from 97.01 (5) to 116.04 (3)° for Sn1 and from 92.42 (6) to 114.16 (7)° for Sn2, with their respective smallest angles being associated with the constrained Sn_2Se_2 four-membered rings.

There are two crystallographically independent K⁺ ions and one unique Na⁺ ion surrounding the $[Sn_3Se_8]^{4-}$ anions. Each K⁺ is coordinated by eight Se atoms in a square antiprismatic arrangement, with K—Se distances in the range 3.333 (2)– 3.5955 (8) Å, which are comparable with those observed in K₂MnSn₂Se₆ [3.352 (2)–3.642 (3) Å; Chen *et al.*, 2000]. In contrast, each Na⁺ cation is four-coordinate to Se atoms, with shorter Na—Se distances of 2.895 (1) Å (× 4). Tetrahedrally coordinated Na⁺ is rare. Several limited examples include Na₂Se (Na—Se 2.948 Å; Zintl *et al.*, 1934) and Na₆Sn₂Se₇ [Na—Se 2.880 (6)–2.926 (7) Å; Eisenmann & Hansa, 1993b].

It is noted that $K_4Sn_3Se_8$ is related to the title compound in its stoichiometry but differs in its structure. This compound crystallizes in the orthorhombic space group *Ccca*. The adjacent $[Sn_3Se_8]^{4-}$ groups are not arranged into linear arrays as in $K_3NaSn_3Se_8$, but are shifted with respect to each other by (a + b)/2. As a result, no tetrahedral voids are formed and the trimers are separated by six- and eight-coordinate K⁺ cations.

The unit cell of $K_3NaSn_3Se_8$ projected approximately along the *c* axis.

To the best of our knowledge, K₃NaSn₃Se₈ represents a new structure type and it is also the first structurally characterized A-Sn-Q ternary chalcogenide (A is an alkali metal and Q is S, Se or Te) containing mixed alkali metal cations.

Figure 2

A fragment of the $[NaSn_3Se_8]^{3-}$ chain, with Na-Se interactions indicated by dashed lines. Displacement ellipsoids are drawn at the 50% probability level.

Thermal analysis via differential scanning calorimetry shows that K₃NaSn₃Se₈ melts congruently at about 741 K. The optical diffuse reflectance spectrum of K₃NaSn₃Se₈ displays a steep absorption edge with an estimated band gap of about 2.2 eV, confirming its expected semiconducting nature.

Experimental

Single crystals of the title compound were extracted from an experiment attempting to prepare K-Ni-Sn-Se quaternary chalcogenides. K₂Se (0.080 g, 0.5 mmol), Ni (0.015 g, 0.25 mmol), Sn (0.060 g, 0.5 mmol) and Se (0.158 g, 2 mmol) were weighed in a glove box under an atmosphere of argon. The mixture was introduced into a thin-walled Pyrex tube and sealed under vacuum (about 10^{-3} Torr; 1 Torr = 133.322 Pa). The tube was gradually heated to 773 K, where it was kept for 6 d, then cooled at a rate of 4 K h^{-1} to 423 K. Several orange block-like crystals were observed after washing the reaction product with dimethylformamide and anhydrous ethanol and drying with anhydrous diethyl ether. Structural refinements indicated the composition of these crystals to be K₃NaSn₃Se₈. The sodium constituent may come from the impure potassium source. Subsequently, direct reaction of a stoichiometric mixture of K2Se, Na2Se, Sn and Se at 723 K for one week yielded an almost single-phase polycrystalline sample with small amounts of Se and SnSe2 impurities which were confirmed by powder X-ray analysis.

Crystal data

K₃NaSn₃Se₈ $M_{\rm r} = 1128.04$ Tetragonal, P4/nbm a = 8.121(1) Å c = 13.672(3) Å $V = 901.7 (3) \text{ Å}^3$ Z = 2 $D_x = 4.155 \text{ Mg m}^{-3}$

Data collection

Enraf-Nonius CAD-4 diffractometer ω scans Absorption correction: ψ scan (Kopfmann & Huber, 1968) $T_{\min} = 0.121, \ T_{\max} = 0.348$ 879 measured reflections 491 independent reflections 387 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation Cell parameters from 25 reflections $\theta = 7.17 - 13.93^{\circ}$ $\mu = 20.956 \ {\rm mm^{-1}}$ T = 293 (2) KBlock, orange $0.10\,\times\,0.08\,\times\,0.05~\mathrm{mm}$

 $R_{\rm int} = 0.039$ $\theta_{\rm max} = 25.95^{\circ}$ $h=0\rightarrow 10$ $k=0\rightarrow 10$ $l = 0 \rightarrow 16$ 3 standard reflections every 150 reflections intensity variation: ±1.5%

Refinement

Refinement on F^2	$(\Delta/\sigma)_{max} < 0.001$
$R[F^2 > 2\sigma(F^2)] = 0.029$	$\Delta \rho_{\rm max} = 1.83 \text{ e} \text{ Å}^{-3}$
$wR(F^2) = 0.071$	$\Delta \rho_{\rm min} = -0.75 \text{ e } \text{\AA}^{-3}$
S = 1.228	Extinction correction: SHELXL9
491 reflections	(Sheldrick, 1997)
27 parameters	Extinction coefficient: 0.0026 (2)
$w = 1/[\sigma^2(F_o^2) + 12P]$	
where $P = (F_o^2 + 2F_c^2)/3$	

Table 1

Selected geometric parameters (Å, °).

$Sn1-Se1 (\times 4)$	2.517 (1)	K2 $-$ Se1 (\times 4)	3.333 (2)
$Sn2-Se2 (\times 2)$	2.477 (1)	$K2-Se2(\times 4)$	3.468 (2)
$Sn2-Se1(\times 2)$	2.612 (1)	Na $-$ Se2 (× 4)	2.895 (1)
K1–Se2 (\times 8)	3.5955 (8)		
Se1 $-$ Sn1 $-$ Se1 (\times 4)	116.04 (3)	$Se2-Sn2-Se1 (\times 4)$	112.09 (2)
$Se1-Sn1-Se1 (\times 2)$	97.01 (5)	Se1-Sn2-Se1	92.42 (6)
Se2-Sn2-Se2	114.16 (7)		

Direct phase determination yielded the positions of the Sn and Se atoms. The K and Na atoms were located from the subsequent difference Fourier synthesis. All atoms were refined anisotropically. The highest residual electronic density peaks were located 0.74 Å from the Sn2 atoms.

Data collection: CAD-4/PC Software (Enraf-Nonius, 1992); cell refinement: CAD-4/PC Software; data reduction: XCAD4/PC (Harms, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SCHAKAL97 (Keller, 1992); software used to prepare material for publication: SHELXL97.

The authors wish to thank the National Science Foundation for its generous support through grant DMR-9553066.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1296). Services for accessing these data are described at the back of the journal.

References

- Boon, J. W. & MacGillavry, C. H. (1942). Recl Trav. Chim. Pays-Bas, 61, 910-920.
- Chen, X., Huang, X., Fu, A., Li, J., Zhang, L.-D. & Guo, H.-Y. (2000). Chem. Mater. 12, 2385-2391.
- Eisenmann, B. & Hansa, J. (1993a). Z. Kristallogr. 203, 299-300.
- Eisenmann, B. & Hansa, J. (1993b). Z. Kristallogr. 203, 297-298.
- Enraf-Nonius (1992). CAD-4/PC Software. Version 1.1. Enraf-Nonius, Delft, The Netherlands.
- Harms, K. (1997). XCAD4/PC. University of Marburg, Germany.
- Keller, E. (1992). SCHAKAL97. University of Freiburg, Germany.
- Klepp, K. O. (1992a). Z. Naturforsch. Teil B, 47, 411-417.
- Klepp, K. O. (1992b). Z. Naturforsch. Teil B, 47, 197-200.
- Klepp, K. O. (1995). J. Solid State Chem. 117, 356-362.
- Klepp, K. O. & Fabian, F. (1992). Z. Naturforsch. Teil B, 47, 406-410.
- Kopfmann, G. & Huber, R. (1968). Acta Cryst. A24, 348-351.
- Peters, J. & Krebs, B. (1982). Acta Cryst. B38, 1270-1272.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen. Germany.
- Sheldrick, W. S. (1988). Z. Naturforsch. Teil B, 43, 249-252.
- Zintl, E., Harder, A. & Dauth, B. (1934). Z. Elektrochem. 40, 588-593.